Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Diagn Microbiol Infect Dis ; 104(1): 115732, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867039

ABSTRACT

Throughout the COVID-19 pandemic nasopharyngeal or nose and/or throat swabs (NTS) have been the primary approach for collecting patient samples for the subsequent detection of viral RNA. However, this procedure, if undertaken correctly, can be unpleasant and therefore deters individuals from providing high quality samples. To overcome these limitations other modes of sample collection have been explored. In a cohort of frontline health care workers we have compared saliva and gargle samples to gold-standard NTS. 93% of individuals preferred providing saliva or gargle samples, with little sex-dependent variation. Viral titers collected in samples were analyzed using standard methods and showed that gargle and saliva were similarly comparable for identifying COVID-19 positive individuals compared to NTS (92% sensitivity; 98% specificity). We suggest that gargle and saliva collection are viable alternatives to NTS swabs and may encourage testing to provide better disease diagnosis and population surveillance.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mouthwashes , Nasopharynx , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Saliva , Specimen Handling/methods
2.
Wellcome open research ; 5, 2020.
Article in English | EuropePMC | ID: covidwho-1679256

ABSTRACT

Background: This study aimed to determine the sensitivity and specificity of reverse transcription PCR (RT-PCR) testing of upper respiratory tract samples from hospitalised patients with coronavirus disease 2019 (COVID-19), compared to the gold standard of a clinical diagnosis. Methods: All RT-PCR testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in NHS Lothian, Scotland, United Kingdom between the 7 th of February and 19 th April 2020 (inclusive) was reviewed, and hospitalised patients were identified. All upper respiratory tract RT-PCR tests were analysed for each patient to determine the sequence of negative and positive results. For those who were tested twice or more but never received a positive result, case records were reviewed, and a clinical diagnosis of COVID-19 allocated based on clinical features, discharge diagnosis, and radiology and haematology results. For those who had a negative RT-PCR test but a clinical diagnosis of COVID-19, respiratory samples were retested using a multiplex respiratory panel, a second SARS-CoV-2 RT-PCR assay, and a human RNase P control. Results: Compared to the gold standard of a clinical diagnosis of COVID-19, the sensitivity of a single upper respiratory tract RT-PCR for COVID-19 was 82.2% (95% confidence interval 79.0-85.1%).   The sensitivity of two upper respiratory tract RT-PCR tests increased sensitivity to 90.6% (CI 88.0-92.7%). A further 2.2% and 0.9% of patients who received a clinical diagnosis of COVID-19 were positive on a third and fourth test;this may be an underestimate of the value of further testing as the majority of patients 93.0% (2999/3226) only had one or two RT-PCR tests. Conclusions: The sensitivity of a single RT-PCR test of upper respiratory tract samples in hospitalised patients is 82.2%. Sensitivity increases to 90.6% when patients are tested twice.  A proportion of cases with clinically defined COVID-19 never test positive on RT-PCR despite repeat testing.

3.
BMC Infect Dis ; 21(1): 318, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1169951

ABSTRACT

BACKGROUND: Accurate diagnosis in patients with suspected coronavirus disease 2019 (COVID-19) is essential to guide treatment and limit spread of the virus. The combined nasal and throat swab is used widely, but its diagnostic performance is uncertain. METHODS: In a prospective, multi-centre, cohort study conducted in secondary and tertiary care hospitals in Scotland, we evaluated the combined nasal and throat swab with reverse transcriptase-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in consecutive patients admitted to hospital with suspected COVID-19. Diagnostic performance of the index and serial tests was evaluated for a primary outcome of confirmed or probable COVID-19, and a secondary outcome of confirmed COVID-19 on serial testing. The diagnosis was adjudicated by a panel, who recorded clinical, laboratory and radiological features blinded to the test results. RESULTS: We enrolled 1368 consecutive patients (median age 68 [interquartile range, IQR 53-80] years, 47% women) who underwent a total of 3822 tests (median 2 [IQR 1-3] tests per patient). The primary outcome occurred in 36% (496/1368), of whom 65% (323/496) and 35% (173/496) had confirmed and probable COVID-19, respectively. The index test was positive in 255/496 (51%) patients with the primary outcome, giving a sensitivity and specificity of 51.4% (95% confidence interval [CI] 48.8 to 54.1%) and 99.5% (95% CI 99.0 to 99.8%). Sensitivity increased in those undergoing 2, 3 or 4 tests to 60.1% (95% CI 56.7 to 63.4%), 68.3% (95% CI 64.0 to 72.3%) and 77.6% (95% CI 72.7 to 81.9%), respectively. The sensitivity of the index test was 78.9% (95% CI 74.4 to 83.2%) for the secondary outcome of confirmed COVID-19 on serial testing. CONCLUSIONS: In patients admitted to hospital, a single combined nasal and throat swab with RT-PCR for SARS-CoV-2 has excellent specificity, but limited diagnostic sensitivity for COVID-19. Diagnostic performance is significantly improved by repeated testing.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Nose/virology , Pharynx/virology , Aged , Aged, 80 and over , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Scotland , Sensitivity and Specificity
4.
PLoS Biol ; 18(12): e3001030, 2020 12.
Article in English | MEDLINE | ID: covidwho-977700

ABSTRACT

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , COVID-19 Testing/economics , Humans , Multiplex Polymerase Chain Reaction/economics , Reverse Transcriptase Polymerase Chain Reaction/economics , SARS-CoV-2/genetics
5.
Euro Surveill ; 25(12)2020 03.
Article in English | MEDLINE | ID: covidwho-15811

ABSTRACT

In response to the outbreak of COVID-19, we set up a team to carry out sampling in the community. This enabled individuals to remain in self-isolation in their own homes and to prevent healthcare settings and services from being overwhelmed by admissions for sampling of suspected cases. There is evidence that this is a cost effective, safe and necessary service to complement COVID-19 testing in hospitals.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Disease Outbreaks/prevention & control , Mass Screening/methods , Pneumonia, Viral/prevention & control , Asymptomatic Diseases , Betacoronavirus , COVID-19 , COVID-19 Testing , Community Health Services/organization & administration , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Patient Isolation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Public Health Practice , Quarantine , SARS-CoV-2 , Scotland/epidemiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL